ON THE VECTOR SPACE OF 0-CONFIGURATIONS

M. DEZA and P. FRANKL

Received 3 February 1982

Let α be a rational-valued set-function on the *n*-element set X i.e. $\alpha(B) \in Q$ for every $B \subseteq X$. We say that α defines a 0-configuration with respect to $\mathscr{A} \subseteq 2^X$ if for every $A \in \mathscr{A}$ we have $\sum_{A \subseteq B \subseteq X} \alpha(B) = 0$. The 0-configurations form a vector space of dimension $2^n - |\mathscr{A}|$ (Theorem 1). Let $0 \le t < k \le n$ and let $\mathscr{A} = \{A \subseteq X : |A| \le t\}$. We show that in this case the 0-configurations satisfying $\alpha(B) = 0$ for |B| > k form a vector space of dimension $\sum_{t < i \le k} \binom{n}{i}$, we exhibit a basis for this space (Theorem 4). Also a result of Frankl, Wilson [3] is strengthened (Theorem 6).

1. Introduction and statement of the results

Let $X = \{x_1, ..., x_n\}$ be a finite set of n elements. For an element A of $2^X = \{F: F \subseteq X\}$ we define the monomial $p(A) = \prod_{x \in A} x, p(\emptyset) = 1$. Set $V = V(2^X) = \{\sum_{A \subseteq X} \alpha(A)p(A) : \alpha(A) \text{ is rational}\}$, i.e. V is the set of all square-

Set $V = V(2^X) = \{ \sum_{A \subseteq X} \alpha(A) p(A) : \alpha(A) \text{ is rational} \}$, i.e. V is the set of all square-free polynomials in the variables x_1, \ldots, x_n . Of course, V is a vector space of dimension 2^n over Q, the field of rationals.

For a family of subsets,
$$\mathscr{A} \subseteq 2^X$$
 we define $V(\mathscr{A}) = \{ \sum_{A \subseteq X} \alpha(A) p(A) : \alpha(A) \text{ is rational, } \alpha(A) = 0 \text{ unless } A \in \mathscr{A} \}.$

For an $\mathscr{A} \subseteq 2^X$ and $f = \sum_{A \subseteq X} \alpha(A) p(A) \in V$ we say that f is \mathscr{A} -orthogonal or a 0-configuration with respect to \mathscr{A} if

(1)
$$\sum_{A \subseteq B \subseteq X} \alpha(B) = 0 \text{ holds for all } A \in \mathscr{A}.$$

We prove:

Theorem 1. The set $V^*(\mathcal{A})$ of all \mathcal{A} -orthogonal elements of $V(2^X)$ is a vector space of dimension $2^n - |\mathcal{A}|$, moreover $V(\mathcal{A}) \cap V^*(\mathcal{A}) = \{0\}$.

AMS subject classification (1980): 05 C 65; 05 C 35, 15 A 03.

In [1] the following more general definition was considered:

Definition 2. For $\mathscr{A}, \mathscr{B} \subseteq 2^X$ we set

$$V^*(\mathscr{A},\mathscr{B}) = \{ f \in V^*(\mathscr{A}) \colon f \in V(\mathscr{B}) \} = V^*(\mathscr{A}) \cap V(\mathscr{B})$$

The special case $\mathcal{A} = \begin{pmatrix} X \\ \leq t \end{pmatrix} = \{A \in 2^X : |A| \leq t\}, \quad \mathcal{B} = \begin{pmatrix} X \\ L \end{pmatrix} = \{B \in 2^X : |B| = k\} \ (k > t, \text{ non-}$ negative integers) was considered by Graver, Jurkat [5], and Graham, Li, Li [4]. The elements of $V^*(\mathcal{A}, \mathcal{B})$ are called in this special case 0-designs.

Remark. Note that for $B \subseteq {X \choose k}$ we have

$$V^*\left(\begin{pmatrix} X \\ \leq t \end{pmatrix}, \mathcal{B}\right) = V^*\left(\begin{pmatrix} X \\ t \end{pmatrix}, \mathcal{B}\right),$$

and for $\mathscr{A} \subseteq \mathscr{A}' \subseteq 2^x$, $\mathscr{B}' \subseteq \mathscr{B} \subseteq 2^x$

$$V^*(\mathscr{A}, \mathscr{B}) \supseteq V^*(\mathscr{A}', \mathscr{B}')$$
 holds.

Theorem 3. ([5], [4]). The space $V^*\begin{pmatrix} X \\ t \end{pmatrix}$, $\begin{pmatrix} X \\ k \end{pmatrix}$ is generated by the polynomials $(x_{i_1} - x_{i_2})(x_{i_3} - x_{i_1}) \dots (x_{i_{2t+1}} - x_{i_{2t+2}}) x_{i_{2t+3}} \dots x_{i_{k+t+1}}. (x_{i_1}, \dots, x_{i_{k+t+1}}) \text{ are distinct elements}$ of X, dim $V^* \begin{pmatrix} X \\ t \end{pmatrix}, \begin{pmatrix} X \\ k \end{pmatrix} = \begin{pmatrix} n \\ k \end{pmatrix} - \begin{pmatrix} n \\ t \end{pmatrix}.$

Here we prove

Theorem 4. A basis of the space $V^*\left(\begin{pmatrix} X \\ \leq t \end{pmatrix}, \begin{pmatrix} X \\ \leq k \end{pmatrix}\right)$ is formed by the polynomials $(x_{i_1}-1)...(x_{i_{t+1}}-1)$ $x_{i_{t+2}}...x_{i_l}$ where $t+2\leq l\leq k$ and $1\leq i_1<...< i_l\leq n$. Thus $\dim\left(V^*\begin{pmatrix} X \\ \leq t \end{pmatrix}, \begin{pmatrix} X \\ \leq k \end{pmatrix}\right) = \sum_{t+1\leq l\leq k} \binom{n}{l}$.

Remark. In [2] the case t=2, k=n was considered. There the terminology 0-measure (or isometry) was used and a entirely different generator system was exhibited.

The following theorem of Ray—Chaudhuri, Wilson [6] can be formulated in terms of 0-designs.

Theorem 5. [6]. Suppose $\mathscr{B} \subset \binom{X}{k}$ is such that $|B \cap B'|$ takes at most t values for $B \neq B' \in \mathcal{B}$. Then $V^* \left(\begin{pmatrix} X \\ t \end{pmatrix}, \mathcal{B} \right) = \{0\}$ i.e. $V(\mathcal{B})$ contains no non-trivial 0-design, and consequently

$$|\mathcal{B}| = \dim V(\mathcal{B}) \le \dim V\left(\begin{pmatrix} X \\ k \end{pmatrix}\right) - \dim V^*\left(\begin{pmatrix} X \\ t \end{pmatrix}, \begin{pmatrix} X \\ k \end{pmatrix}\right) = \begin{pmatrix} n \\ t \end{pmatrix}.$$

Singhi [7] pointed out that one can localize Theorem 5, i.e. in any 0-design $f = \sum_{B \in \binom{X}{k}} \alpha(B) p(B)$ one can find a $B \in \binom{X}{k}$ such that $\alpha(B) \neq 0$ and $|\{|B \cap B'| : B \neq \emptyset\}| \neq B' \in \binom{X}{k}$, $\alpha(B') \neq 0\}| \geq t+1$.

We prove a similar strengthening of a theorem of Frankl—Wilson [3].

Theorem 6. Suppose $f = \sum_{A \subseteq X} \alpha(A) p(A) \in V^* \left(\begin{pmatrix} X \\ \leq t \end{pmatrix}, \begin{pmatrix} X \\ \leq k \end{pmatrix} \right)$. Then there exists an $A \subseteq X$ such that $\alpha(A) \neq 0$ and

$$|\{|A \cap A'|: A \subseteq A' \subseteq X, \alpha(A') \neq 0\}| \geq t+1.$$

2. The proof of the results

Proof of Theorem 1. The fact that $V^*(\mathscr{A})$ is a vector space is evident. The solutions of (1) for a fixed $A \in 2^X$ form a subspace of dimension $2^n - 1$ in V — as the solution of any non-trivial homogenous linear equation. Now obviously $V^*(\mathscr{A}) = \bigcap_{A \in \mathscr{A}} V^*(\{A\})$.

Thus $V^*(\mathcal{A})$ is the intersection of $|\mathcal{A}|$ subspaces of dimension 2^n-1 , yielding

(2)
$$\dim V^*(\mathscr{A}) \ge 2^n - |\mathscr{A}|.$$

As dim $V(\mathscr{A})=|\mathscr{A}|$, dim $V^*(\mathscr{A})=2^n-|\mathscr{A}|$ will follow from (2) if we establish $V(\mathscr{A})\cap V^*(\mathscr{A})=\{0\}$. To prove this let $f=\sum_{A\in\mathscr{A}}\alpha(A)p(A)$ be an arbitary non-zero element of $V(\mathscr{A})$. Choose an $A\in\mathscr{A}$ such that $\alpha(A)\neq 0$ but $\alpha(A')=0$ for every $A'\supset A$. Then checking for A the condition (1) we conclude $f\notin V^*(\mathscr{A})$.

Proof of Theorem 4. In the case $n \le t$ obviously $V^*\left(\begin{pmatrix} X \\ \le t \end{pmatrix}, \begin{pmatrix} X \\ \le k \end{pmatrix}\right) = 0$, thus the statement is true. We apply induction on n, simultaneously for all k, t. Let $f = \sum_{A \subseteq X} \alpha(A) p(A)$ belong to $V^*\left(\begin{pmatrix} X \\ \le t \end{pmatrix}, \begin{pmatrix} X \\ \le k \end{pmatrix}\right)$. Then we can write $f = f_0 + f_1$ where $f_0 = \sum_{x_n \notin A \subseteq (X - \{x_n\})} \alpha(A) p(A)$, $f_1 = \sum_{x_n \notin A \subseteq (X - \{x_n\})} \alpha(A \cup \{x_n\}) p(A) x_n$.

Let us set $f_2 = f_1/x_n$. Then

$$(f_0 + f_2) \in V^* \left(\begin{pmatrix} X - \{x_n\} \\ \leq t \end{pmatrix}, \begin{pmatrix} X - \{x_n\} \\ \leq k \end{pmatrix} \right), \text{ and}$$

$$f_2 \in V^* \left(\begin{pmatrix} X - \{x_n\} \\ \leq t - 1 \end{pmatrix}, \begin{pmatrix} X - \{x_n\} \\ \leq k - 1 \end{pmatrix} \right).$$

As $f=(f_0+f_2)+(x_n-1)f_2$ the induction hypothesis yields the decomposition of f into a linear combinations of polynomials in V, each of them of the form $(x_{i_1}-1)...(x_{i_{k+1}}-1)x_{i_{k+2}}...x_l, l \le k$.

 $(x_{i_1}-1)...(x_{i_{t+1}}-1)x_{i_{t+2}}...x_l, l \le k.$ For f_0+f_2 there are no problems, however for $(x_n-1)f_2$ the monotonicity is violated for every term g in the decomposition of f_2 having l>t+1.

For such g we can write

$$(x_n-1)g = \sum_{j=t+1}^{l} \left(g \frac{x_{i_g}-1}{\prod\limits_{t+1 \le v \le j} x_{i_v}} x_n - g \frac{x_{i_g}-1}{\prod\limits_{t+1 \le v \le j} x_{i_v}} \right) + (x_{i_1}-1) \dots (x_{i_t}-1)(x_n-1),$$

which procures a decomposition with the desired property.

Now we calculate the dimension of the space $W = V^* \left(\begin{pmatrix} X \\ \leq t \end{pmatrix}, \begin{pmatrix} X \\ \leq k \end{pmatrix} \right) =$ $=V^*\begin{pmatrix} X \\ \leq t \end{pmatrix} \cup \begin{pmatrix} X \\ \geq k+1 \end{pmatrix}$, thus Theorem 1 yields dim $W = \sum_{t+1 \leq l \leq k} \binom{n}{l}$, proving the

Since in new generator systems the number of polynomials is just dim W, they are linearly independent, i.e. they form a basis.

Remark. The proof also shows that these polynomials form a system of generators for $V^* \begin{bmatrix} X \\ \leq t \end{bmatrix}$, $\begin{pmatrix} X \\ \leq k \end{pmatrix}$ as a **Z**-module, i.e. if f has integer coefficients then it can be obtained as an integer linear combination of the generators.

Proof of Theorem 6. For $B \subseteq 2^X$ we define matrices M_i , $0 \le i \le t$. For that let $A_1, \ldots, A_{\binom{n}{i}}$ be a fixed ordering of the elements of $\binom{X}{i}$ and B_1, \ldots, B_m of those of \mathscr{B} , i.e. $|\mathscr{B}|=m$. Now for $1 \le r \le m$, $1 \le s \le \binom{n}{i}$ the element

$$m_i(r, s) = \begin{cases} 0 & \text{if} \quad A_s \subseteq B_r \\ 1 & \text{if} \quad A_s \subseteq B_r \end{cases}.$$

Let M be the m by $\binom{n}{t} + \binom{n}{t-1} + \dots + \binom{n}{0}$ matrix which we obtain by putting side by side M_t , ..., M_0 . Let us denote by u_i the *i*'th row vector of M. In this case $f = \sum_{B_i \in \mathscr{B}} \alpha(B_i) p(B_i) \in V^* \left(\begin{pmatrix} X \\ \leq t \end{pmatrix} \right)$ is equivalent to $\sum_{i=1}^m \alpha(B_i) u_i = 0$ i.e. in that case the row vectors of M are not independent and consequently the rank of M is less than m.

Suppose now that $\mathscr{B} \subseteq 2^{x}$ is such that for every $B \in \mathscr{B}$, $|B \cap B'|$ takes at most t values different from |B|. In view of the above observations it is sufficient to show that in this case the rank of M is at least m.

To do this let $v_{i,j}$ denote the *i*'th column vector of M_j , $1 \le i \le m$, $0 \le j \le t$,

and let W be the vector space spanned by these vectors over Q. Let us calculate the matrices $N_j = M_j M_j^T$ for $0 \le j \le t$. N_j is an m by m matrix with column vectors w_i^j , $1 \le i \le m$, $w_i^j \in W$. The (r, s)-element of N_j is $\binom{|B_r \cap B_j|}{i}$, $1 \le r, s \le m$.

Without loss of generality we assume $|B_r| \ge |B_s|$ for $1 \le r < s \le m$. Fix r, $1 \le r \le m$ and let l_1, \ldots, l_p be the different values of $|B_r \cap B_s|$ for $r < s \le m$. Thus,

by our assumption $p \le t$, there exist rational constanst c_j such that $(x-l_1)...$ $...(x-l_p) = \sum_{1 \le j \le t} c_j \binom{x}{j}$. Let us set $u_r = \sum_{j=0}^t c_j w_r^j$ and let N be the m by m matrix formed by the column vectors $u_r \in W$, $1 \le r \le m$.

By definition N is an upper-triangular matrix with non-zero diagonal (the t'th diagonal entry is $\prod_{i=1}^{p}(|B_r|-l_i)\neq 0$, while the (r,s)-entry for r < s is $\prod_{i=1}^{p}(|B_r\cap B_s|-l_i)=0$), thus N has full rank m. As the columns of N are from W, we deduce dim W= rank $M \geq m$.

Open problem. Find a basis for $V^*(\mathcal{A}, \mathcal{B})$ in the general case, in particular determine dim $V^*(\mathcal{A}, \mathcal{B})$.

In the particular case $\mathscr{A} = \begin{pmatrix} X \\ t \end{pmatrix}$, $\mathscr{B} = \begin{pmatrix} X \\ \leq k \end{pmatrix}$ a basis can be obtained from the basis in Theorem 4 by adding all the monomials of degree less than t.

It is not hard to see that in the case $\mathscr{A} \subset \mathscr{B}$ we have dim $V^*(\mathscr{A}, \mathscr{B}) = |\mathscr{B}| - |\mathscr{A}|$.

References

- [1] M. DEZA, Problème de l'existence de $(H^1; H^2, b)$ -hypergraphs, Cahiers du C. E. R. O. Bruxelles, 17, 2-3-4, (1975) 185-190.
- [2] M. DEZA, Isometries of hypergraphs, in *Proc. Symposium on Graph Theory* (Calcutta, 1976), ISI Lecture Notes 4. (ed. A. R. Rao), Mc Millan India, 1979, 174—189.
- ISI Lecture Notes 4, (ed. A. R. Rao), Mc Millan India, 1979, 174—189.
 [3] P. FRANKL and R. M. WILSON, Intersection theorems with geometric consequences, Combinatorica 1 (1981), 357—368.
- [4] R. L. GRAHAM, S-Y. R. LI and W.-W. W. LI, On the structure of t-designs, SIAM J. Alg. Disc. Methods, 1 (1980), 8—14.
- [5] J. B. Graver and W. B. Jurkat, The module Structure of Integral Designs, Journal of Combinatorial Theory A 15 (1973), 75—90.
- [6] D. K. RAY-CHAUDHURI and R. M. WILSON, On t-designs, Osaka J. Math. 12 (1975), 737-744.
- [7] N. M. SINGHI, personal communication, 1981.

M. Deza, P. Frankl

C.N.R.S., 54 Bd. Raspail Paris 75006, France